Stable discretization of scalar and constrained vectorial Perona–Malik equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid domain decomposition solvers for scalar and vectorial wave equation

We present hybrid finite element methods, which are equivalent to a discontinuous Galerkin method based on the ultra weak variational formulation (UWVF) by Cessenat and Despres. When solving a scalar or vectorial wave equation with hybrid finite elements, normal and tangential continuity of the flux field, respectively, is broken across element interfaces and reinforced again by introducing hyb...

متن کامل

Scalar and Vectorial mu-calculus with Atoms

We study an extension of modal mu-calculus to sets with atoms and we study its basic properties. Model checking is decidable on orbit-finite structures, and a correspondence to parity games holds. On the other hand, satisfiability becomes undecidable. We also show expressive limitations of atom-enriched mu-calculi, and explain how their expressive power depends on the structure of atoms used, a...

متن کامل

A unified optical theorem for scalar and vectorial wave fields.

The generalized optical theorem is an integral relation for the angle-dependent scattering amplitude of an inhomogeneous scattering object embedded in a homogeneous background. It has been derived separately for several scalar and vectorial wave phenomena. Here a unified optical theorem is derived that encompasses the separate versions for scalar and vectorial waves. Moreover, this unified theo...

متن کامل

Discretization and simulation of Zakai equation

This paper is concerned with numerical approximations for stochastic partial differential Zakai equation of nonlinear filtering problem. The approximation scheme is based on the representation of the solutions as weighted conditional distributions. We first accurately analyse the error caused by an Euler type scheme of time discretization. Sharp error bounds are calculated: we show that the rat...

متن کامل

Finite Element Discretization of State-Constrained Elliptic Optimal Control Problems with Semilinear State Equation

We study a class of semilinear elliptic optimal control problems with pointwise state constraints. The purpose of this paper is twofold. First, we present convergence results for the finite element discretization of this problem class similarly to known results with finite-dimensional control space, thus extending results that are for control functions only available for linear-quadratic convex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Interfaces and Free Boundaries

سال: 2007

ISSN: 1463-9963

DOI: 10.4171/ifb/172